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Abstract. We study a realistic simulation model for the propagation of slow-combustion fronts in paper.
In the simulations the deterministic part of the dynamics is that of the KPZ equation. The stochastic
part, including in particular the short-range noise correlations, is taken from images of the structure
of real paper samples. The parameters of the simulations are determined by using an inverse method
applied to the experimental front data and by comparing the simulated and the experimental effective-
noise distributions. Our model predicts well the shape of the spatial and temporal correlation functions,
including the location of the crossovers from short-range (SR) to long-range (LR) behavior. The values of
the exponents χSR, βSR, χLR and βLR agree with the experimental ones. The apparent SR exponents are
found to be the same for different types of quenched noise. The correlated noise is shown to have a major
contribution to the effective, ’measured’ nonlinearity. We discuss in detail how to implement the noise so
as to obtain a realistic simulation model.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 64.60.Ht
Dynamic critical phenomena

1 Introduction

Kinetic roughening phenomena are usually classified into
universality classes according to a few essential factors,
i.e., the nature of the local front dynamics and symmetries
or conservation laws [1,2]. Interfaces in each universal-
ity class display asymptotically unique scaling properties,
which can be identified from the experimentally observed
or simulated front data. Perhaps the most studied uni-
versality class of non-equilibrium phenomena is that of
the nonlinear stochastic differential equation proposed by
Kardar, Parisi and Zhang [3], or the KPZ equation. The
KPZ equation can be argued to generically describe rough-
ening processes that involve local propagation of an inter-
face along its outward normal [2]. It has been applied to
a wide variety of problems extending from propagating
forest fires and magnetic flux fronts to growing bacterial
colonies.

Previously, we have experimentally studied the kinetic
roughening of one-dimensional smouldering fronts in pa-
per samples. By measuring the scaling exponents of spatial
and temporal correlation functions, universal amplitude
relations, and persistence properties, we have unequivo-
cally demonstrated [4–7] that this process asymptotically
obeys KPZ dynamics. In what follows, we shall concen-
trate on the (1+1)-dimensional KPZ equation which, for
the function h(x, t) that gives the location or ‘height’ of

a e-mail: juha.merikoski@phys.jyu.fi

the front, is given by [3]

∂h(x, t)
∂t

= ν
∂2h(x, t)

∂x2 +
λ

2

[
∂h(x, t)

∂x

]2

+ F + η , (1)

where ν is the surface tension coefficient, λ is the strength
of the nonlinearity, F is a constant driving ‘force’, and the
function η contains all the noise that affect the dynamics.

The form of the noise term η is known to have a big in-
fluence on the scaling properties of the KPZ equation [2].
If it is annealed, i.e., of the form η = η(x, t), Gaussian,
and both spatially and temporally uncorrelated such that
〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)δ(t − t′),
then the scaling behaviour of stationary fronts is de-
scribed by the values of the scaling exponents β = 1/3
and χ = 1/2 (for the definitions of β and χ see Ref. [2]
and Sect. 5 below). For λ=0, equation (1) reduces to the
Edwards-Wilkinson equation (EW), which for this kind of
noise can be solved exactly [1], with the result χ = 1/2
and β = 1/4.

Uncorrelated noise may have a non-Gaussian ampli-
tude distribution such as, e.g., a power-law distribution
P (η) ∼ η−(µ+1), where µ is a decay parameter [2]. In this
case rare events with large amplitude can dominate the
kinetics as the deterministic part of the dynamics is too
‘slow’ to suppress them. For µ below a critical value µc,
the slower than Gaussian decay of noise amplitudes is
asymptotically relevant, and the roughness exponent χ be-
comes proportional to µ. Usually power-law distributed
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noise also breaks the simple self-affine interface morphol-
ogy resulting in ‘multi-affinity’ characterized by an infinite
series of exponents instead of just one [1].

Another possibility that may give rise to ‘non-generic’
scaling behavior is provided by annealed long-range-
correlated noise [2]. If the noise is only spatially corre-
lated, 〈η(x, t)η(x′, t′)〉 ∼ |x − x′|2ρ−1δ(t − t′), one finds
χ = (1 + 2ρ)/3 for 1/4 < ρ < 1. For correlations de-
caying faster (ρ < 1/4), the usual KPZ values β = 1/3
and χ = 1/2 are recovered. Situation is more complicated
for temporally correlated noise, which breaks the Galilean
invariance and also the scaling relation χ + χ/β = 2 [8].

In the case of quenched noise, which is of the form
η = η(x, h(x, t)), the KPZ equation displays pinning for
small values of the driving force F [9]. Depinning of the
front is a critical phenomenon: at depinning the aver-
age front velocity begins to increase with a power law
v ∼ (F − Fc)θ as F is increased above a critical value Fc.
Below Fc, the front becomes pinned to one of the many
locally stable configurations. At F = Fc, the scaling prop-
erties of the pinned front depend on the behavior of the
nonlinear term resulting in two new universality classes. In
the ‘quenched KPZ’ (QKPZ) universality class the effec-
tive nonlinearity diverges at the pinning transition, and
the front can be mapped onto the directed percolation
depinning (DPD) problem [10,11]. The scaling exponents
for pinned fronts are then χ = β ≈ 0.63. On the other
hand, if the nonlinearity vanishes at F = Fc, the asymp-
totic dynamics is described by the linear ‘quenched’ EW
(QEW) equation with the exponents χ ≈ 1 and β ≈ 0.88
for the pinned as well as for moving fronts just above
Fc [9]. Quenched noise together with the nonlinearity nat-
urally lead to a power-law distributed effective noise, and
the fronts thus display ‘multi-affine’ scaling properties [1].
In the QKPZ case just above Fc, the second moments of
the height-height correlation functions scale with expo-
nents χ ≈ 0.75 and β ≈ 0.75, but the fronts are not self-
affine [12]. With a driving force strong enough, F � Fc,
the front no longer can be pinned by the local disorder,
and KPZ with uncorrelated noise is asymptotically recov-
ered [12].

Attention of the theoretical and numerical work has
so far been focussed on simple model systems with rather
ideal types of correlated noise [1–3,8–14]. However, ex-
perimental systems are always restricted in size and often
dominated by ‘anomalous’ noise. Therefore, the variation
in the values measured for the scaling exponents in differ-
ent experimental systems expected to be of KPZ type is
large [2]. In the present work, we use direct numerical solu-
tion of the KPZ equation with noise determined from real
paper samples to gain insight into the origin of the short-
range dynamics observed in our slow-combustion experi-
ments [4–7]. Other simulation parameters are determined
by using an inverse method applied to the experimental
front data. Like in the experiments, we find KPZ behavior
in the long-range (LR) regime. The deviations from that in
the short-range (SR) regime can originate from the noise
as well as from other dynamical processes involved. This

interplay of the ‘stochastic’ and ‘deterministic’ ingredients
of the dynamics will be the focus of the present study.

First, in Section 2 we present a discretization of the
KPZ equation and discuss its limitations. The input noises
used in the simulations and their characteristics are dis-
cussed in Section 3. In Section 4 we describe the inverse
method used to obtain input parameters for our simula-
tions from the experimentally observed kinetics. The sim-
ulation results and their scaling behaviors are discussed in
Section 5.

2 Discretization of the KPZ equation

In this work numerical solution of equation (1) was
achieved by using the Euler’s method solution of the finite
difference equation

hn+1
i = hn

i + ν0
∆t

∆x2
(hn

i+1 + hn
i−1 − 2hn

i )

+ λ0
∆t

6∆x2

[
(hn

i+1 − hn
i )2 + (hn

i − hn
i−1)

2

+ (hn
i+1 − hn

i )(hn
i − hn

i−1)
]

+ c0∆t +
√

2D0∆t/∆x ξ(i, hn
i ), (2)

where hn
i is the front position at the ith lattice point at the

n’th time step, ν0, λ0 and D0 are the nominal values of the
KPZ parameters used in the numerical integration, c0 is
the constant driving velocity (becomes the F of Eq. (1)
in the continuum limit), and ξ(i, hn

i ) is a two-dimensional
noise matrix. In the simulations the value of the noise
for a given (not discrete) value of hn

i , was obtained from
the noise matrix ξ(i, hn

i ) as a linear interpolation. For the
nonlinear term we use in equation (2) the ‘improved dis-
cretization’ introduced by Lam and Shin [15] to produce
the correct renormalization of the KPZ parameters under
coarse-graining. The spatial resolution ∆x of the simu-
lations was set to be the same as the resolution in our
experiments (see below). The temporal resolution ∆t was
set small enough to ensure the numerical accuracy of the
integration.

One should note that in the presence of quenched
noise, for small values of ∆t the simulated fronts can reach
a pinned, non-propagating configuration of h(x, t), in
which the noise contribution and the other terms in equa-
tion (2) locally have exactly opposite values. This happens
as for increasing temporal resolution ∆t in the discretized
equation, the noise term proportional to

√
∆t vanishes

more slowly than the other terms, which are proportional
to ∆t. To create a realistic simulation model with this
type of noise, the input parameters ν0, λ0, D0 and c0 thus
have to be determined (see Sect. 4 below) separately for
each ∆t.

We also tried other possible discretizations of the non-
linear term, the most simple version of which is the stan-
dard discretization 1

2λ0∆t(hn
i+1 + hn

i−1)
2/4∆x2 [16]. The

small-slope assumption behind the KPZ equation was
studied by replacing in equation (2) the nonlinear term
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with the expression λ0∆t
√

1 + (hn
i+1 + hn

i−1)2/4∆x2 −
λ0∆t. Here −λ0∆t is needed to compensate for the ex-
clusion of the constant term in the Taylor expansion of√

1 + (dh/dx)2, which arises when the local propagation
of the front is in the direction of the normal [2]. Note
that this square-root form contains all even powers of
dh/dx. Additional tests were performed to study the pos-
sible finite-size effects in the LR scaling, and in the results
of the inverse method, by using free and periodic boundary
conditions. In our simulations (with rather limited statis-
tics because of the availability of input noise data, see
below) we found no noticeable differences between the re-
sults produced by different versions of the nonlinearity
and boundary conditions. We also considered the possi-
ble role of a term of the type d4h/dx4, but no better ‘fit’
with the experimentally observed [6] SR dynamics could
be obtained in this way.

3 Input noise in the simulations

The noise matrices used in the simulations were ob-
tained from paper samples of the same grades as used
in the experiments of references [4–7]. Parts of noise
matrices are shown in Figure 1. Noise (I) is an opti-
cally scanned image of thin lens paper with basis weight
9.1 g/m2. Ten different samples of the lens paper with size
210 × 540 mm2 were scanned using 8 bit pixel depth and
250 dpi (0.102 mm/pixel) resolution. Noise (II) and noise
(III) are β -radiographs of copier papers with basis weights
70 g/m2 and 80 g/m2, respectively, of size 177×455 mm2.
Two of the (II) 70 g/m2 and three of the (III) 80 g/m2

β -radiographs were scanned using 16 bit pixel depths and
with a spatial resolution of 300 dpi (0.085 mm/pixel). Pro-
duction of β radiographs is much more laborous in prac-
tice than optical scanning and, therefore, our statistics
(disorder averaging) is better for noise (I) than for (II) or
(III). Noise (IV) was generated by disordering or randomly
scrambling the pixels of the noise matrix (I). The spatial
resolution of the scanned images was chosen to be same
as in the experiments [6]. We also tested simulations with
higher spatial resolution, with no considerable changes in
the results.

In the case of lens paper, the grey scale values of the
scanned images were multiplied by −1 to make the lo-
cal propagation velocity in the simulations a decreasing
function of the mass density, as observed in real burning
experiments. Naturally, the dependence of the front ve-
locity on the local mass is somewhat more complicated in
reality, but out main interest here is the effect of correla-
tions in the noise. The variance of each matrix was set to
unity and the systematic error caused by the scanner was
corrected by setting to zero the mean of every column in
the noise matrices.

Scanned noises (I), (II) and (III) were used in the sim-
ulations with the ordinary discretization of the KPZ equa-
tion equation (2). Noise (I) was also used in tests with the
square-root form of the nonlinear term. Scrambled noise
(IV) was used in simulations as both quenched [denoted

Fig. 1. 30 × 30 mm2 samples of the noise used in the simula-
tions. Noise (I) is an optically scanned image of lens paper, and
noise (II) and noise (III) are β-radiographs of copier papers.
Noise (IV) is generated by disordering noise (I).
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Fig. 2. The noise fluctuation correlation functions C(r) for
noises (II), (III), (I) and (IV) from top to bottom in linear (a)
and in semi-logarithmic (b) scale. The inset of (a) shows the
noise amplitude distributions and the inset of (b) a double-
logarithmic plot of the correlation function.

by Q(IV) below] and annealed [denoted by A(IV)] noise.
We used noise (I) also to study the effect of a rough initial
condition and in a set of simulations, in which the value
of velocity c0 was varied.

In Figure 2a we show the two-point fluctuation corre-
lation functions of the four input noises and the amplitude
distributions of the noises in the inset. In the correlation
functions averaging was only taken in the x direction. Cor-
relations vanish in the scale of a few millimeters for all
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noises except, of course, for the uncorrelated randomized
noise (IV), for which the correlation length is of the or-
der of one pixel size or ∆x. Thereafter, for noises I-III the
correlation functions appear to have power-law tails as is
evident from the inset of Figure 2b. The regular density
oscillations seen in Figure 2b in the scale of a few millime-
ters are a real feature resulting from the manufacturing
process of paper (so-called ‘wire marking’).

4 Inverse method and input parameters

The nominal values for the simulation parameters ν0 and
λ0 were obtained by using the inverse method of Lam and
Sander [17] applied to our experimental front data [18].
Also, the simulated fronts were analysed in the same way
to obtain the effective values of the parameters. Both re-
sults are presented in Figure 3. In this method [17] the co-
efficients of the KPZ equation are calculated as functions
of coarse graining. First, equation (1) is discretized as

∆hi(t)
τ

� a · Hi(t) + ηi(t), (3)

where τ is the discretization time step (a multiple of
the recording time step), a is a vector of the coeffi-
cients of the KPZ equation, a = [c, ν, λ/2], the vec-
tor Hi(t) = [1,∇2h, (∇h)2] contains the coarse-grained
derivatives of the front height, and ηi(t) is here assumed
to be Gaussian white noise. Spatial coarse graining is done
by truncating the Fourier components with wavelengths
smaller than � from the recorded front heights h(x, t). The
vector Hi(t) is calculated from the coarse-grained front
heights for different time steps τ , and the vector of the
coefficients a is determined by minimizing the function
J (a) = 〈[∆hi(t)/τ − a · Hi(t)]2〉i,t. The noise correlator
D is determined from the relation D = (�τ/2)J (amin)
with amin the solution of the minimizing problem [18].

For c0 and D0 the nominal values were fixed by com-
paring the velocity distributions of simulated and ob-
served fronts. The values for c0 are close to the average
velocities in the experiments except for the ‘unphysical’
scrambled noise (IV), for which we for convenience chose
c0 = 5.5 mm/s for the quenched, and c0 = 24 mm/s for
the annealed noise.

The role of noise correlations in the effective (observed)
λ was studied by performing simulations for λ0 = 0, 2,
4, 8, and 12 mm/s, and then using the inverse method on
the simulation data, see Figure 4. Clearly, there is a con-
tribution to the effective nonlinearity from the correlated
noise as well. For our most physical or the ‘best simula-
tion model’, we in this case finally chose λ0 = 2 mm/s
to produce an effective λ close to the experimental value
λexp = 4 mm/s. It is easy to understand that in the
case of a correlated noise matrix, the effective D and
the nominal value D0 can be very different, i.e. approxi-
mately D0 � ∆x/∆tIxy , where Ixy is the integral of the
noise correlation function C(r) from zero up to the appar-
ent correlation length of the noise.

The nominal values for the coefficients used in the
main part of this study are shown in Table 1 for one of
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Fig. 3. The effective values of the KPZ parameters as deter-
mined by the inverse method. (a) On the left we show the ex-
perimental values and (b) on the right the values determined
from the simulated fronts produced by our ‘best simulation
model’ (noise II). The nominal values λ0 and ν0 are indicated
by the horizontal lines in (b). The values of the time steps are
τ= 0.2(.), 0.4(◦), 0.8(×), 1.6(�),3.2(*) and 6.4(�) s.

Fig. 4. The strength of the nonlinearity λ calculated from the
simulation data as a function of the nominal value of λ0. The
slope of the fitted line is one.

the copier papers (80 g/m2) and for the lens paper. The
quoted values are averages over coarse-graining lengths
� ∈ [15,20] mm, and determined for the shortest coarse-
graining times τ used. For the determination of c and λ,
smaller values of τ can and have been used, see refer-
ence [18] for a detailed discussion.
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Table 1. Nominal values of the KPZ coefficients in the simu-
lations of copier paper [noise (II)] and lens paper [noise (I)].

Noise c0 [mm
s

] λ0 [mm
s

] ν0 [mm2

s
] D0 [mm3

s
]

(I) 11.4 2.0 5.0 0.005

(II) 0.45 0.3 0.1 0.0000045

5 Scaling properties of simulated fronts

For the simulation data we performed data analysis similar
to the one done earlier in our experimental work described
in detail in reference [6], except that the removal of the
global tilt from simulated fronts was not necessary as we
normalized the average of each column of the noise matrix
to get rid of the systematic error produced by the optical
scanner.

According to the Family-Vicsek [19] scaling relation
the (squared) front width w2(L, t) ≡ 〈(h − h̄)2〉, where
the overbar denotes spatial and brackets noise averaging,
should scale as a function of time t and system size L as

w2(t) ∼ t2βf(t/Lz) ∼
{

t2β , for ξ � L;
L2χ , for ξ � L. (4)

Here ξ ∼ t1/z denotes the correlation length, which in-
creases with time until it saturates due to finite system
size. The evolution of the front width in our simulations
is shown in Figure 5. The solid line denotes the front
width w2(t) averaged over ten simulations starting from
flat initial conditions. The dashed line is the evolution
of ten simulations with the same noise but with differ-
ent rough initial conditions. The guideline in Figure 5
corresponds to the theoretical value for the growth ex-
ponent in the asymptotic regime, β = 1/3. The inset
shows the magnitude of the fluctuations for ten inde-
pendent simulations with noise (I). The saturation values
of wsat were almost equal to the experimental ones [6]:
w2

sat � 10 mm2 for noise (I) corresponding to the lens pa-
per and w2

sat � 4 mm2 for noises (II) and (III) determined
from the copier papers.

Another way to determine the scaling exponents is to
study the stationary two-point correlation function [2] of
front height fluctuations δh(x, t) around the mean h̄(t),

C2(r, t) = 〈[δh(x′, t′) − δh(x′ + r, t′ + t)]2〉x′,t′ , (5)

where δh(x, t) = h(x, t) − h(t). We consider the spatial
and temporal correlations separately via

G(r) ≡ C2(r, 0) ∼ r2χ and C(t) ≡ C2(0, t) ∼ t2β . (6)

In Figure 6a we show the spatial correlation function
G(r) for noises (I), (II), (III), A(IV), and Q(IV). Like in
our experiments [6], distinct crossovers to asymptotic scal-
ing are evident, except in the result for noise A(IV). The
slopes of the guidelines in the figure are taken from the ex-
perimental results and match well the simulated results.
For the short-range regime we find χSR ∼ 0.9 and for

10
-1

1 10

t [s]

10
-2

10
-1

1

10

W
2

(t
)

0 10 20 30 40 50
t [s]

0

5

10

15

20

25

W
2 (t

)

Fig. 5. The average front widths w2 as functions of time for ten
simulations with noise (I). The result for a flat initial condition
is plotted with a thick solid line, and with a dashed line for
rough initial conditions. The inset displays the magnitude of
fluctuations, showing the individual results for ten realizations
of noise (I).

the long-range (asymptotic) regime χLR ∼ 0.5. We note
that G(r) displays quite a short asymptotic scaling regime
if the simulations are started from flat initial conditions.
This is because of the limited size of the ‘paper’ (scanned
noise matrix) in the simulations. Increasing the nonlinear-
ity and starting from a rough initial configuration speeds
up roughening, and facilitates a more accurate determina-
tion for χLR. The temporal correlation functions C(t) for
the same simulations are shown in Figure 6b. Again, the
slopes of the guidelines are taken from experiments [6],
and correspond to βSR = 0.7 and βLR = 0.33.

In Table 2 we show the crossover points rc and tc for
spatial and temporal correlation functions, respectively.
There is a considerable uncertainty in rc and tc because
of the rather limited noise averaging, so our conclusions
on them will be rather qualitative. First, the values rc and
tc produced by the simulation models are reasonably close
to those measured in the experiments [6]. However, in con-
trast with the experiments, in simulations we observe no
multiscaling in the correlation functions, i.e. strong depen-
dence on the moment (for details see Refs. [5,6], in par-
ticular Fig. 1 in [5] and Fig. 8 in [6]). As expected, sim-
ulations with randomized annealed noise A(IV), display
no crossover. The second question concerns the origin of
the crossovers. By comparing simulations (I) (and also (I’)
and (I”)) we observe that, for the given noise correlations,
the spatial crossover scale rc is not very strongly depen-
dent on the simulation parameters or on 〈v〉. We conclude
that rc is mainly determined by the correlations in the
input noise. In the rightmost column of Table 2 we show
the dimensionless ratio 〈v〉tc/rc. Within the accuracy of
the crossover values, we find that rc ∼ tc〈v〉, where the
constant of proportionality is close to unity [20]. This re-
sult is in agreement with rc being mainly determined by
the input-noise correlations, as asymptotic scaling would
in this case be expected for times t > rc/〈v〉.
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Fig. 6. (a) Correlation functions G(r) for five different noises.
The solid lines correspond to the experimentally observed scal-
ing exponents (χSR = 0.9 and χLR = 0.5). (b) Correlation
functions C(t) for the same noises. The solid lines correspond
to the experimentally observed scaling exponents (βSR = 0.7
and βLR = 0.33). For comparison, we whow for noise (I) the
correlation functions for three different values of the driving
velocity, curves from top to bottom have c0 = 8.4, 11.4, and
13.4 mm/s, respectively. Of these c0 = 11.4 mm/s is our ‘best
simulation model’ for the lens paper. For clarity, the data sets
(II), (III), and (IV) have been shifted in (a) by factors 0.1, 0.1
and 15, and in (b) by factors 0.7, 0.7 and 10, respectively.

For randomized but quenched noise Q(IV), crossover-
like behavior is observed at rc ≈ 2.5 mm. This length scale
cannot be related to any length scale in the input noise,
for which the correlation length in this case is of the order
of one pixel (roughly 1 mm). The simulation parameters
were chosen for this case so as to produce the same rough-
ness of the stationary fronts as in the other cases, which
meant the noise amplitude was now clearly higher. There-
fore the fronts were much closer to the pinning limit than
in the other cases, and an additional length scale related
to ‘distance’ from pinning became visible. The crossover
found for the Q(IV) case is related to this additional length
scale. We tested the behaviour of the additional length
scale by changing the simulation parameters for noise (IV)

Table 2. Average velocity 〈v〉 of the front in the stationary
state and the locations of the crossovers from SR to LR be-
havior for the correlation functions shown in Figure 6. We also
show data for additional simulations (I’) and (I”), where the
simulation parameters are the same as for noise (I) in Table 1
except that in (I’) c0 = 13 mm/s and D0 = 0.001 mm3/s, and
in (I”) c0 = 8 mm/s and D0 = 0.01 mm3/s. The parameters
in (I’) and (I”) were chosen so as to produce the same value of
〈v〉 and the same width of the input noise amplitude distribu-
tion as in our ‘best simulation model’ for the lens paper. For
the simulation set Q(IV’) the parameters were the same as for
Q(IV) except that c0 = 12.3 mm/s and D0 = 0.01 mm3/s,

Noise c0 [mm
s

] 〈v〉 [mm
s

] rc [mm] tc [s] 〈v〉tc/rc

(I) 8.0 4.5 5.8 2.3 1.8

(I) 11.4 8.0 5.2 0.75 1.2

(I) 18.0 15.6 3.2 0.40 2.0

(I’) 13.0 8.0 4.0 0.78 1.6

(I”) 8.0 8.0 4.2 0.51 0.98

(II) 0.45 0.45 2.9 11 1.7

(III) 0.45 0.45 2.8 14 2.3

Q(IV) 24.0 9.1 2.5 0.50 1.8

Q(IV’) 12.3 9.1 1.0 0.23 2.1
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Fig. 7. Correlation functions G(r) for noise IV with two sets
of parameters, cases Q(IV) and Q(IV’) in Table 2.

such that distance from pinning was increased. The re-
sulting spatial correlation function is shown in Figure 7,
and the spatial and temporal crossover parameters are
shown in Table 2 as case Q(IV’). As expected, the appar-
ent crossover scale was now reduced to rc ≈ 1.0 mm. We
also noticed that this additional length scale, which is reg-
ulated by the distance from pinning, is related to the effec-
tive ratio D/ν (whose dimension is length), where D and
ν are obtained from the simulated fronts by the inverse
method which assumes annealed noise. For the simulation
sets (I-III), the correlation length of the input noise was
well above the effective ratio D/ν, and determined rc as
discussed above. We also note that, for the KPZ equation
with annealed noise, the ratio D/ν only sets the amplitude
(the transverse scale) of the asymptotic part of the spatial
correlation function [2]. As only propagating fronts well
above pinning were considered in the experiments [4–7],
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Fig. 8. Grey scale maps of ηeff(x, t) for τ = 4 s. Lighter areas
correspond to higher front velocities.

we do not analyze here the effects of pinning limit any
further.

The effective noise ηeff can be determined from the
fluctuations of the local front velocities as [21]

ηeff(x, t) ≡ [δh(x, t + τ) − δh(x, t)]/τ, (7)

where δh(x, t) = h(x, t)−h(t) and τ is the time step. Grey
scale images of ηeff(x, t) as produced by simulations for
λ0 = 2 and 0 mm/s are shown in Figure 8. The images on
the left are for noise (I), and on the right for noise A(IV).
There is no major qualitative difference between the noise
maps for zero and finite λ0, which is in agreement with
the observation that quenched noise alone can produce
an effective nonlinearity (see discussion of Fig. 4 above).
From the noise maps we determined amplitude distribu-
tions P (ηeff) for time steps τ = 1/2, 1, 2, 4, and 8 s.
In the experiments the noise-amplitude distributions had
power-law tails for short time steps, but the simulations
do not reproduce this feature. Again, this indicates that
KPZ simulations of this kind cannot include all dynamical
features of the real burning process. From the noise map,
the two-point correlation function of the effective noise
can be obtained via

Cη(x) = 〈δηeff(x0 + x, t0)δηeff(x0, t0)〉, (8)

where δηeff(x, t) = ηeff(x, t)−ηeff(t), the overbar denoting
spatial averaging at the given t. This function is shown in
Figure 9 for the input noises (I) and A(IV) (the correla-
tions in the input noises themselves were already shown
in Fig. 2). The effective noise correlations for these two
simulations are qualitatively (apart from the amplitudes)
quite similar, despite the very different nature of the input
noises. This indicates that, already in these time scales,
the deterministic part of the equation of motion has a big
effect on the dynamics, and front fluctuations largely ap-
pear the same way as those produced by annealed noise.
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Fig. 9. Spatial effective noise correlations observed in simu-
lations for input noises (I) and (IV). The time step used to
determine the effective noise via equation (7) was τ = 1/2, 1,
2, 4 and 8 s, from top to bottom.

6 Conclusion

We have studied a simulation model combining KPZ dy-
namics with realistic noise for the propagation of slow-
combustion fronts in paper. In the simulations the deter-
ministic part of the dynamics was taken to be that of the
KPZ equation, with parameters determined by applying
an inverse method to the experimental front data. The
noise correlations were taken from images of the structure
of real paper samples. For given values of the other simu-
lation parameters (including the discretization), the noise
amplitude was set by comparing the effective noise in the
simulations with that in the experiments.

Our ‘best simulation model’ reproduces well the shapes
of the spatial and temporal correlation functions and the
location of the crossovers. The actual values of the expo-
nents χSR, βSR, χLR and βLR agree with the experimen-
tal ones. For copier paper the agreement is perhaps less
convincing than for the lens paper, possibly because of
the rather limited noise averaging in the simulations. For
propagating fronts well above pinning, the apparent SR
exponents are roughly the same for all types of quenched
noise. Notice that for noise IV the length scale related to
structural noise is reduced to one pixel. Therefore an ad-
ditional length scale regulated by closeness to pinning be-
comes visible, and the crossover in the spatial correlation
function is now related to this scale. This additional length
scale appears to be related to the effective D/ν value as
determined by the inverse method.

The coarse graining of the effective KPZ coefficients in
the simulations is similar to that seen in the experiments.
The quenched SR correlated noise present in our model
was shown in part to contribute to the effective nonlinear-
ity, and taking into account this contribution turned out
to be essential for the construction of a realistic model for
the asymptotic behavior of the fronts.

Evidently the structural noise correlations do not alone
explain all features of the data obtained from real burning
experiments, in particular the apparent multiscaling in the
short-range data and the power-law tails of the effective
noise distributions. In addition to various manipulations



626 The European Physical Journal B

of the input noise, we studied the possible role of deter-
ministic terms of the type (dh/dx)2m for m > 1, and the
term d4h/dx4, in the equation of motion, as well as the
effect of different boundary conditions, but no explana-
tion for the apparent multiscaling (in the SR regime) seen
in the experiments could be found that way. The origin
of these features is beyond the present KPZ description,
which does not take into account possible dynamical fea-
tures in the noise such as e.g. the dynamical coupling of
effective noise in convection and heat conduction.

This work has been supported by the Academy of Finland
under the Center of Excellence Program (Project 44875) and
the MaDaMe Program (Project 772495).
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